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Abstract

A point set is separated if the minimum distance between its elements is 1. We call two real numbers
nearly equal if they differ by at most 1. We prove that for any dimension d ≥ 2 and any γ > 0, if P is a

separated set of n points in Rd such that at least γ n2 pairs in
(

P
2

)
determine nearly equal distances, then

the diameter of P is at least C(d, γ )n2/(d−1) for some constant C(d, γ ) > 0. In the case of d = 3, this
result confirms a conjecture of Erdős. The order of magnitude of the above bound cannot be improved for
any d .
c© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Erdős asked and partially answered numerous questions on the distribution of distances among
n points in a Euclidean space [10,17,20,16,14,7]. Perhaps the best known question of this type is
the so-called “unit distance problem” he raised in 1946 [9]: Given n points in the plane (or, more
generally, in Rd ), at most how many of the

( n
2

)
interpoint distances can coincide? It is conjectured

that in the plane this maximum is n1+ const
log log n , which is asymptotically sharp, for example for

a
√

n × √
n piece of the integer lattice. The best known upper estimate is only O(n4/3) [21,
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Fig. 1. n points in R3 can determine 1
3 n2 nearly equal distances.

22]. In 3-space, the currently best upper bound is n3/2β(n), where β(n) is an extremely slowly
increasing function related to the inverse Ackermann function [8]. However, the true order of
magnitude of this function is probably closer to n4/3. In higher dimensions, the asymptotically
tight answers are (see, e.g., [17]):

n2
(

1

2
− 1

d

)
+ O(n) if d ≥ 4 is even,

n2
(

1

2
− 1

d − 1

)
+ O(n4/3) if d ≥ 5 is odd.

The exact answer is known if d = 4 [6]. These questions are intimately related to problems
concerning incidences between points and curves, surfaces, etc. (See [2,19].)

Erdős observed that the answer to the unit distance problem does not remain the same if
one counts the number of distances that are nearly equal, where several distances are said to
be nearly equal if they differ by at most 1, i.e. they all lie in an interval [t, t + 1] for some
t > 0. To exclude trivial examples, we consider only separated point sets, i.e. point sets in which
the minimum distance between two points is at least 1. Erdős et al. [11,12] proved that for any
t > 0, d ≥ 2, and for any separated set P of n points (vectors) in Rd , the number of point

pairs {u, v} ⊂ P with ‖u − v‖ ∈ [t, t + 1] is at most T (d, n) = n2

2 (1 − 1
d + o(1)), as n tends

to infinity. Here, T (d, n) denotes the number of edges in a balanced d-partite complete graph
on n vertices [3], i.e. in a graph whose vertices are divided into d classes, each having � n

d 	 or

 n

d � elements, and two vertices are connected by an edge if and only if they belong to different
classes. This is known to be the maximum number of edges that a Kd+1-free graph of n vertices
can have.

The above upper bound on the number of point pairs {u, v} ⊂ P with ‖u − v‖ ∈ [t, t +1] can
be attained for every t ≥ t (d, n), as shown by the following construction. Let w1, w2, . . . , wd

be the vertices of a regular (d − 1)-dimensional simplex of edge length t , lying in the hyperplane
xd = 0. At each wi , draw a line perpendicular to the hyperplane xd = 0, and on each of
these lines pick �n/d	 or 
n/d� distinct points whose xd -coordinates are integers between 0
and n/d , so that the total number of points is n (see Fig. 1 for d = 3). If t is sufficiently large
depending on d and n (roughly 1

2d2 n2), the distance between any pair of points selected on
different perpendicular lines belongs to the interval [t, t + 1].

The question arises, what is the minimal diameter of a separated set of n points in Rd with
Ω(n2) nearly equal distances? It is not hard to see (using the Pythagorean theorem) that the
answer in the plane is Θ(n2). The problem becomes more interesting in higher dimensions.
Notice that the diameter of the 3-dimensional configuration depicted in Fig. 1 is Ω(n2). However,
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Fig. 2. An n-point separated set in R3 which determines 1
4 n2 nearly equal distances and has diameter O(n).

it is easy to find a set of n points in R3 with n2

4 nearly equal distances, whose diameter is O(n):

Take two
√

n
2 ×

√
n
2 integer grids in two parallel planes at distance n

2 from each other (see Fig. 2).

Erdős conjectured that there exists no such example with diameter o(n).
We prove the Erdős conjecture in the following more general form:

Theorem 1.1. Let d ≥ 2 and γ > 0 be fixed. Let P be a separated set of n points in Rd such
that at least γ n2 pairs of points in P determine nearly equal distances. Then P has diameter at
least C(d, γ )n2/(d−1) for some C(d, γ ) > 0.

The construction depicted on Fig. 2 can be easily generalized to higher dimensions, showing
that the bound in Theorem 1.1 is tight. Our proof of Theorem 1.1 is based on Szemerédi’s
regularity lemma for dense graphs [15], and on a Ramsey-type result for dot products of vectors,
derived in [1]. In Section 2, we reduce the problem to the “complete bipartite” case. That is, we
show that it is sufficient to prove Theorem 1.1 for point sets P that can be obtained as the union
of two sets Q and R such that all distances ‖u − v‖ (u ∈ Q, v ∈ R) are nearly equal. At the end
of Section 2, we outline the proof in this special case. The argument is divided into three steps,
presented in full detail in Sections 3–5. For an alternative approach in three dimensions, see [18].

2. Reduction to the complete bipartite case

The following result shows that it is sufficient to establish Theorem 1.1 in the “complete
bipartite case”.

Theorem 2.1. Let γ > 0, t > 0, and let P be a set of n points in Rd with at least γ n2 pairs
{u, v} ⊂ P, such that ‖u − v‖ ∈ [t, t + 1].

Then there exist two subsets Q, R ⊂ P such that |Q| = |R| ≥ cn and ‖u − v‖ ∈ [t, t + 1]
for all u ∈ Q, v ∈ R. (Here c := c(d, γ ) is a positive constant depending only on d and γ .)

Proof. Let G = (V (G), E(G)) be the graph on the vertex set V (G) := P in which two vertices
u, v ∈ V (G) are connected by an edge if and only if ‖u − v‖ ∈ [t, t + 1]. By the assumptions,
we have e(G) = |E(G)| ≥ γ n2.

For any subsets X, Y ⊆ V (G), let e(X, Y ) denote the number of edges of G with one endpoint
in X and the other in Y . For any v ∈ V (G), let deg(v) stand for the degree of v in G.

In order to use Szemerédi’s regularity lemma in the convenient and efficient form proposed
by Komlós [15] (see also [13]), we have to introduce the notion of super-regularity.
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Fig. 3. Finding a complete bipartite subgraph in G .

Definition 2.2. Let ε > 0 and δ > 0. Given a graph G = (V , E) and two disjoint subsets
A, B ⊆ V , we say that the pair {A, B} is (ε, δ)-super-regular if the following two conditions are
satisfied:

(i) e(X, Y ) > δ|X | · |Y | for every X ⊆ A, Y ⊆ B with |X | ≥ ε|A|, |Y | ≥ ε|B|;
(ii) deg(a) ≥ δ|B| for all a ∈ A, and deg(b) ≥ δ|A| for all b ∈ B .

Lemma 2.3 (Komlós). There exists a constant ε0 such that if ε ≤ ε0, t = (3/ε) log(1/ε), and G
is a graph with n vertices and γ n2 edges, then G contains an (ε, δ)-super-regular pair (A, B)

with |A| = |B| ≥ (2γ )t� n
2 	 and δ ≥ γ .

Consider the graph G and set ε = min{ 1
4d+3 , ε0}. Using Lemma 2.3, we obtain an (ε, δ)-super-

regular pair (A, B) with |A| = |B| ≥ (2γ )t� n
2 	, δ ≥ γ , and t = (3/ε) log(1/ε). Define two maps

ω1, ω2 : A∪ B �→ Rd+2 as follows. For all u = (u1, u2, . . . , ud) ∈ A, v = (v1, v2, . . . , vd ) ∈ B ,
let

ω1(u) = (u1, u2, . . . , ud , ‖u‖2 − t2, 1),

ω2(u) = (u1, u2, . . . , ud , ‖u‖2 − (t + 1)2, 1),

ω1(v) = (−2v1,−2v2, . . . ,−2vd , 1, ‖v‖2),

ω2(v) = (2v1, 2v2, . . . , 2vd ,−1,−‖v‖2).

Then, for all u ∈ A, v ∈ B , the edge {u, v} is in E(G), that is, ‖u − v‖ ∈ [t, t + 1] if and only if
ω1(u) · ω1(v) ≥ 0 and ω2(u) · ω2(v) ≥ 0 (see Fig. 3).

We need the following lemma of Alon et al. [1] that can be established using a consequence
of the Borsuk–Ulam theorem discovered by Yao and Yao [23].

Lemma 2.4 (Alon et al.). Let U and V be finite sets of vectors in Rk . Then there exist subsets
U ′ ⊂ U, V ′ ⊂ V with |U ′| ≥ 1

2k+1 |U |, |V ′| ≥ 1
2k+1 |V | such that either u · v ≥ 0 holds for all

u ∈ U ′, v ∈ V ′, or u · v < 0 holds for all u ∈ U ′, v ∈ V ′.

Applying this lemma with k = d + 2 to the sets U := ω1(A), V := ω1(B), we obtain two
subsets A′ ⊂ A, B ′ ⊂ B such that |A′| ≥ 1

2d+3 |A|, |B ′| ≥ 1
2d+3 |B|, and either ω1(u) · ω1(v) ≥ 0

holds for all u ∈ A′, v ∈ B ′, or ω1(u) · ω1(v) < 0 holds for all u ∈ A′, v ∈ B ′. Observe that this
corresponds to ‖u − v‖ ≥ t or ‖u − v‖ < t .
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Applying the same once again to U ′ = ω2(A′) and V ′ = ω2(B ′), we obtain subsets
A′′ ⊂ A′, B ′′ ⊂ B ′ of size |A′′| ≥ 1

2d+3 |A′|, |B ′′| ≥ 1
2d+3 |B ′| such that either ω2(u) · ω2(v) ≥ 0

holds for all u ∈ A′′, v ∈ B ′′, or ω2(u) · ω2(v) < 0 holds for all u ∈ A′′, v ∈ B ′′. Consequently
the pairwise distances ‖u − v‖ for u ∈ A′′, v ∈ B ′′ are either all in [0, t), all in [t, t + 1] or all in
(t + 1,∞).

We claim that the pairwise distances between A′′ and B ′′ must be all in [t, t + 1]. If this were
not the case, they would be all outside of [t, t + 1] and we would have e(A′′, B ′′) = 0. However,
by the (ε, δ)-super-regularity of the pair (A, B), we obtain e(A′′, B ′′) > δ|A′′| · |B ′′| > 0, since
ε = min{ 1

4d+3 , ε0} and |A′′| ≥ 1
2d+3 |A′| ≥ 1

4d+3 |A| ≥ ε|A|, |B ′′| ≥ 1
2d+3 |B ′| ≥ 1

4d+3 |B| ≥ ε|B|.
Thus, we conclude that ‖u − v‖ ∈ [t, t + 1] for all u ∈ A′′, v ∈ B ′′. Furthermore, both

A′′ and B ′′ are of size at least ε|A| = ε|B| ≥ ε(2γ )t� n
2 	, where ε = min{ 1

4d+3 , ε0} and

t = (3/ε) log(1/ε) = O(d4d). Consequently, the sets Q := A′′ and R := B ′′ meet the
requirements of Theorem 2.1. The constant factor c(d, γ ) is roughly γ O(d4d ). �

It remains to establish Theorem 1.1 for separated point sets that can be partitioned into two
parts Q and R of size m such that all pairs belonging to Q × R determine nearly equal distances.
The argument is divided into three steps.

1. In the first step, described in Section 3, we select a set T ⊂ R of at most 2d points, spanning
a “fat crosspolytope” with near-orthogonal axes. The “fatness” of T is measured by a certain
determinant D(T ) (which corresponds to the volume of the crosspolytope assuming it is
convex). We show that there is a set T ⊂ R with D(T ) = Ω(|R|) = Ω(m). The existence of
T relies heavily on the assumption that R is a separated point set.

2. In the second step (Section 4), we bound the volume of the locus of points whose distance
from each vertex of T belongs to the interval [t, t + 1]. Note that this region can be obtained
as the intersection of |T | spherical annuli centered at the vertices of T . We show that this
intersection has volume O(td−1/D(T )).

3. In Section 5, we complete the proof of Theorem 1.1 by observing that Q is contained in
the region discussed in Section 4, whose volume is O(td−1/D(T )) = O(td−1/m). Since
Q is a separated set of size m, the volume of this region must be Ω(m). This implies
t = Ω(m2/(d−1)).

3. Finding a fat crosspolytope

First, we consider only one part of the bipartite subgraph, R, and we find a small subset T ⊂ R
which spans a sufficiently “fat” crosspolytope. In this section, we are not using the condition of
nearly equal distances, only the fact that R is a separated set. The following is our measure of
“fatness”.

Definition 3.1. Given a set T = {p1, q1, . . . , pr, qr}, consisting of r pairs of distinct points, let
D(T ) denote the determinant

[q1 − p1, . . . , qr − pr, er+1, . . . , ed]
where er+1, . . . , ed are mutually orthogonal and also orthogonal to q1 − p1, . . . , qr − pr. For
T = ∅, we set D(T ) = 1.

Note that 1
r ! D(T ) is the r -dimensional volume of the convex hull of T , provided that the

points {p1, q1, . . . , pr, qr} are in a convex position. However, in the sequel this fact will not be
used.
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Now we can formalize the first step of the proof outlined at the end of the last section. First,
we need an elementary lemma bounding the size of a separated set in a given volume.

Lemma 3.2. Let X ⊂ Rd be a separated set of points, and let B1/2(x) denote a ball of radius
1/2 centered at x. If B1/2(x) ⊂ Z for every x ∈ X, then

|X | < dd/2 Vol(Z).

Proof. The balls B1/2(x) are pairwise disjoint for all x ∈ X . Their union is contained in Z ,
therefore

Vol(Z) ≥
∑
x∈X

Vol(B1/2(x)) = πd/2

2dΓ (1 + d/2)
|X | >

1

dd/2
|X |,

where the last inequality follows from standard estimates for the Gamma function [5]. �

The main result of this section is the following.

Lemma 3.3. Let R ⊂ Rd be a separated set of m points, of diameter Δ. Let δ > 1 and
α = 1/(k

√
d) for some k ∈ Z+. Then there is an orthonormal basis {e1, . . . , ed} and points

{p1, q1, . . . , pr, qr} = T ⊆ R (for some 0 ≤ r ≤ d; T possibly empty) such that

1. For all k ≤ r we have qk − pk = hkek +∑k−1
j=1 β j kej, where hk ≥ δ, |β j k| ≤ 1.

2. D(T ) ≥
(

α
d(δ+3)

)d
m.

3. The diameter of T is at most αΔ.

Proof. First, we “reduce” the diameter of R, which must be contained in a hypercube H of
side length Δ. We partition H into subcubes of diameter αΔ. This can be accomplished, for
example, by choosing a = √

d/α = kd and subdividing H uniformly into ad subcubes of side
length Δ/a = αΔ/

√
d . (Note that we are using very rough estimates; we make no attempt to

optimize multiplicative factors depending only on d .) By the pigeonhole principle, there is a
subset R1 ⊆ R such that

1. |R1| = n1 ≥ m/ad ,
2. diam(R1) ≤ αΔ.

Let {p1, q1} be a pair of points at maximal distance in R1 and let h1 = ‖q1 − p1‖. If h1 < δ

then we stop, set T = ∅, and choose an arbitrary orthonormal basis {e1, . . . , ed}. In this case, R1
is contained in a hypercube of side length δ, which means (by Lemma 3.2) that n1 < dd/2(δ+1)d

and m ≤ adn1 < (d(δ + 1)/α)d , so the statement of the lemma is true.
Otherwise, let e1 = (q1 − p1)/h1. Note that for any point x ∈ R1, we have x · e1 ∈

[p1 · e1, q1 · e1], which is an interval of size h1. We assume, for simplicity, that h1 is an integer,
and subdivide the interval [p1 · e1, q1 · e1] into h1 unit intervals. By the pigeonhole principle,
there is a subset R2 ⊆ R1 such that

1. n2 = |R2| ≥ n1/h1, and
2. there exists b1 such that for all x ∈ R2 we have x · e1 ∈ [b1, b1 + 1].

We continue this procedure, restricting our attention to the subspace orthogonal to the
previously constructed pairs of points. For k > 1, assume that we have constructed vectors
e1, . . . , ek−1 and subsets R1, . . . , Rk . Denote by Sk−1 the subspace generated by {e1, . . . , ek−1}
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and by S⊥
k−1 its orthogonal complement. Assume that the diameter of Rk projected on S⊥

k−1 is
hk ≥ δ. Namely, there is a unit vector ek orthogonal to e1, . . . , ek−1, and there are extreme points
pk, qk ∈ Rk such that

qk − pk = hkek +
k−1∑
j=1

β j kej (1)

for some |β j k| ≤ 1. In addition, for every x ∈ Rk , we have x · ek ∈ [pk · ek, qk · ek]. Again, there
must be a subset Rk+1 ⊆ Rk such that

1. nk+1 = |Rk+1| ≥ nk/hk , and
2. there exists bk such that for all x ∈ Rk+1 we have x · ek ∈ [bk, bk + 1].

Iterate this procedure as long as hk ≥ δ. Let r be the minimum index such that hr+1 < δ. If
h1, h2, . . . , hd ≥ δ, we set hd+1 = 0 and r = d . If r < d , choose d − r additional unit vectors
so that we have an orthonormal basis {e1, e2, . . . , ed}.

We set T = {p1, q1, . . . , pr, qr}. It remains to estimate the determinant D(T ). Note that due
to (1), we have

D(T ) = [q1 − p1, . . . , qr − pr, er+1, . . . , ed] = h1h2 . . . hr . (2)

Since hr+1 < δ, Rr+1 must be contained in a hypercube of side length δ and volume (δ + 1)d .
By Lemma 3.2, we obtain nr+1 = |Rr+1| < dd/2(δ + 1)d . On the other hand, we have

nr+1 ≥ nr

hr
≥ nr−1

hr−1hr
≥ · · · ≥ n1

h1h2 . . . hr
≥ m

adh1 . . . hr
.

We assumed that each hk is an integer; in general, we should consider 
hk� and partition each
interval [bk, bk + 1] into 
hk� ≤ hk(1 + 1/δ) subintervals. This does not make any significant
difference; in general, we have nr+1 ≥ m/(ad(1 + 1/δ)dh1 . . . hr ). Finally using (2), we obtain

D(T ) = h1h2 . . . hr ≥ m

addd/2(1 + 1/δ)d(δ + 1)d
≥
(

α

d(δ + 3)

)d

m. � (3)

4. Intersecting the annuli

In the second step of the proof outlined at the end of Section 2, we use the crosspolytope T
constructed in Section 3 to restrict the region of possible locations for the points in Q. These
points must be at distance between t and t + 1 from each vertex of T ; this defines an annulus
containing Q, for each vertex of T . In fact, we consider an interval of distances [t − 1

2 , t + 3
2 ],

in order to contain not only Q but also a ball of radius 1/2 around each point in Q. First, we
analyze the intersection of two such annuli.

Lemma 4.1. Let ‖p − q‖ = h. Define an annulus

An(y) =
{

x ∈ Rd : ‖x − y‖ ∈
[

t − 1

2
, t + 3

2

]}
.

Then the intersection of An(p) ∩ An(q) is contained in a “slab” of thickness (4t + 2)/h defined
by

L(p, q) =
{

x ∈ Rd :
(

x − p + q
2

)
· (q − p) ∈ [−2t − 1, 2t + 1]

}
.
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Fig. 4. The first two steps of constructing the fat polytope (projection onto S2). R3 will be the set of points considered
in the next stage.

Proof. Assume ‖x − p‖, ‖x − q‖ ∈ [t − 1
2 , t + 3

2 ]. We have(
x − p + q

2

)
· (q − p) = 1

2
‖x − p‖2 − 1

2
‖x − q‖2

≤ 1

2

(
t + 3

2

)2

− 1

2

(
t − 1

2

)2

= 2t + 1.

Similarly,
(
x − p+q

2

) · (q − p) ≥ −2t − 1. �

With the help of this lemma, we are now able to bound the intersection of the annuli centered
at each point of T (see Fig. 4).

Lemma 4.2. Suppose that T = {p1, q1, . . . , pr, qr} is a set of points as guaranteed by
Lemma 3.3, for Δ = 2(t + 1), α = 1/(16

√
d), δ = max{2d, 16

√
d}, and t ≥ 3. For any

y ∈ T , define the annulus An(y) centered at y as in Lemma 4.1. Then we have

Vol

(
r⋂

i=1

(An(pi) ∩ An(qi))

)
≤ 100(4t + 2)d−1

D(T )
.

Proof. Instead of directly analyzing the intersection of the above annuli, we apply Lemma 4.1.
Consider the region

R = L(p1, q1) ∩ L(p2, q2) ∩ · · · ∩ L(pr, qr).

By Lemma 4.1,

R =
{

x ∈ Rd :
(

x − pi + qi

2

)
· (qi − pi) ∈ [−2t − 1, 2t + 1] for all i = 1, . . . , r

}
.

Since the vectors q1 − p1, . . . , qr − pr are in the subspace Sr generated by {e1, . . . , er}, we
can regard R as a prism with an r -dimensional base Rr ⊂ Sr , extending indefinitely in the
orthogonal subspace S⊥

r generated by {er+1, . . . , ed}.
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Next, we calculate the r -dimensional volume of the base Rr . This is the same as the volume
of R confined to a unit hypercube in S⊥

r :

R̄ =
{

x ∈ Rd :
(

x − pi + qi

2

)
· (qi − pi) ∈ [−2t − 1, 2t + 1] for all i = 1, 2, . . . , r

and x · ei ∈ [0, 1] for all i = r + 1, . . . , d

}
.

R̄ is a set that maps to a hypercube of volume (4t + 2)r via an affine transformation whose
Jacobian is D(T ). Therefore

Volr (Rr ) = Vol(R̄) = (4t + 2)r/D(T ). (4)

Finally, we intersect R once again with an annulus centered at a point of T , for example,
with An(p1). In order to bound the volume of R ∩ An(p1), we need to argue that R is located
relatively close to p1. For any point x ∈ R and for any k = 1, 2, . . . , r , we have∣∣(x − p1) · (qk − pk)

∣∣
≤
∣∣∣∣
(

x − pk + qk

2

)
· (qk − pk)

∣∣∣∣+
∣∣∣∣
(

pk + qk

2
− p1

)
· (qk − pk)

∣∣∣∣
≤ (2t + 1) +

∥∥∥∥pk + qk

2
− p1

∥∥∥∥ hk ≤ 2(t + 1)(1 + αhk), (5)

using the definition of R and the fact that the diameter of T is bounded by αΔ = 2α(t + 1). We
claim that for any k ≤ r

|(x − p1) · ek| ≤ 4(t + 1)

(
1

hk
+ α

)
(6)

holds. Consider the index k maximizing
∣∣(x − p1) · ek

∣∣, and assume on the contrary that∣∣(x − p1) · ek
∣∣ > 4(t + 1)(1/hk + α). Recall (1). In terms of the basis {e1, . . . , ed}, we can

write qk − pk = hkek +∑
j<k β j kej, where hk ≥ δ and |β j k| ≤ 1. We obtain

|(x − p1) · (qk − pk)| =
∣∣∣∣∣(x − p1) ·

(
hkek +

k−1∑
j=1

β j kej

)∣∣∣∣∣
≥ |hk(x − p1) · ek| −

k−1∑
j=1

|(x − p1) · ej|

≥ (hk − (k − 1))|(x − p1) · ek|,
using the maximality of |(x − p1) · ek |. Finally, taking into account that hk ≥ δ ≥ 2(k − 1), we
have

|(x − p1) · (qk − pk)| >
hk

2
|(x − p1) · ek| > 2(t + 1)(1 + αhk)

which contradicts (5). This proves (6). We assume hk ≥ δ ≥ 16
√

d and we choose α =
1/(16

√
d), which implies that

|(x − p1) · ek| ≤ t + 1

2
√

d
for all x ∈ R and for all k ≤ r. (7)
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Fig. 5. The intersection prism R = L(p1, q1) ∩ L(p2, q2) (projection onto S2, r = 2). The prism extends indefinitely
in the dimensions orthogonal to S2.

Without loss of generality, assume that the base Rr is translated along the prism R so that
its r -dimensional affine hull contains p1. Then every point x ∈ Rr satisfies (x − p1) =∑r

j=1((x − p1) · ej)ej, and

‖x − p1‖2 =
r∑

j=1

((x − p1) · ej)
2 ≤ r(t + 1)2

4d
≤ (t + 1)2

4
.

Thus, every point of Rr is a distance at most (t + 1)/2 from p1 (see Fig. 5).
Now we are ready to estimate the volume of R∩ An(p1). Write R = ⋃

x∈Rr
(x+S⊥

r ), where
(x+S⊥

r ) denotes an affine subspace through x, orthogonal to Sr . Notice that An(p1)∩ (x +S⊥
r )

is a (d − r)-dimensional annulus, or the region between (d − r − 1)-dimensional spheres of radii
r1 = √

(t − 1/2)2 − ρ2 and r2 = √
(t + 3/2)2 − ρ2, where ρ = ‖x − p1‖ ≤ (t + 1)/2. Let

S(d−r−1) denote a (d − r − 1)-dimensional unit sphere. We get

Vold−r (An(p1) ∩ (x + S⊥
r )) =

∫ r2

r1

zd−r−1Vold−r−1(S(d−r−1)) dz

≤ (r2 − r1)r
d−r−1
2 Vold−r−1(S(d−r−1)).

We have ρ ≤ (t + 1)/2 and

r2 − r1 ≤
√

(t + 3/2)2 − (t + 1)2/4 −
√

(t − 1/2)2 − (t + 1)2/4,

which can be verified to be bounded from above by 3 for t ≥ 3. The volume of S(d−r−1) is
bounded by 33 in any dimension [5]. We obtain the volume of R ∩ An(p1) by integrating over
all x ∈ Rr :

Vol(R ∩ An(p1)) =
∫
Rr

Vold−r (An(p1) ∩ (x + S⊥
r )) dx

< 100
∫
Rr

r d−r−1
2 dx ≤ 100(t + 3/2)d−r−1 (4t + 2)r

D(T )
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≤ 100(4t + 2)d−1

D(T )
,

using the volume of Rr from (4). �

5. Proof of Theorem 1.1 and concluding remarks

Now we can complete the proof of Theorem 1.1 in the complete bipartite case.

Theorem 5.1. Let Q ∪ R ⊂ Rd be a separated set of points such that |Q| = |R| = m and all
distances between x ∈ Q and y ∈ R are between t and t + 1. Then there is a constant Cd > 0
such that

t > (Cd − o(1)) m2/(d−1).

Proof. We can assume that t ≥ 3. (For t < 3, there is only a constant number of points in Q
that can fit within distance t + 1 from any y ∈ R.) Note also that the diameter of R is at most
Δ = 2(t + 1), due to the condition of nearly equal distances between Q and R. Then the balls
of radius 1/2 centered at each point of Q are disjoint and, by Lemma 4.2, must be contained in
a region of volume V ≤ 100(4t + 2)d−1/D(T ). Lemma 3.3 with α = 1/(16

√
d) implies that

D(T ) ≥ m/(16d3/2(δ + 3))d . By Lemma 3.2, we obtain

m = |Q| < dd/2 · 100(4t + 2)d−1 (16d3/2(δ + 3))d

m
,

(4t + 2)d−1 >
m2

100(16d2(δ + 3))d
,

where δ = max{2d, 16
√

d}. Asymptotically (for d fixed and m → ∞), we have

t > (Cd − o(1)) m2/(d−1).

For large d , the multiplicative constant Cd is roughly 1/(128d3). �

Together with Theorem 2.1, this proves the main result, Theorem 1.1.
Since Theorem 2.1 provides only m ≥ c(d, γ )n where c(d, γ ) ≥ γ O(d4d), the loss of factor

O(d3) in Theorem 5.1 is insignificant. The constant factor that we obtain for Theorem 1.1 is
C(γ, d) ≥ γ O(4d ), i.e. doubly exponentially small in d . We did not try to optimize this constant.

We could have used Szemerédi’s original regularity lemma in place of Lemma 2.3. However,
this would have given a much smaller regular pair (A, B) of density roughly γ : its size would
have been only about n/tower(1/γ ) (a tower function of 1/γ ). It was shown in [1] that the

1
2k+1 -factor in Lemma 2.4 cannot be substantially improved.

In [1], Lemma 2.4 was used to establish the existence of a positive constant β such that every
family F of n semi-algebraic sets in Rd of constant description complexity has two subfamilies
F1,F2 ⊆ F , each containing at least βn members, with the property that every member of
F1 intersects all members of F2 or no member of F1 intersects any member of F2. For other
geometric consequences of Lemma 2.4, consult [1]. We believe that Lemma 2.4, in combination
with other ideas, such as the regularity lemma, may be a useful tool for various other problems
in discrete geometry and Ramsey theory.

Finally, we mention a related open problem of Erdős. Let P be a set of n points in Rd . We call
P admissible if the unit distance is the minimum distance determined by P and any two different
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distances determined by P differ by at least 1. Erdős asked for the minimum diameter of an
n-element admissible set in Rd . For large n, it is known that the minimum is at least cd ·n1/(d−1).
On the other hand, there exist admissible sets with diameter at most Cd · n2/(d−1) [4].
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[15] J. Komlós, M. Simonovits, Szemerédi’s regularity lemma and its applications in graph theory, in: Combinatorics,
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