A note on coloring line arrangements

Eyal Ackerman
Department of Mathematics, Physics, and Computer Science
University of Haifa at Oranim
Tivon 36006, Israel
ackerman@sci.haifa.ac.il

János Pach*
EPFL, Lausanne, Switzerland
and Alfréd Rényi Institute, Budapest, Hungary
pach@cims.nyu.edu

Rom Pinchasi†
Mathematics Department
Technion—Israel Institute of Technology
Haifa 32000, Israel
room@math.technion.ac.il

Rados Radoičić
Department of Mathematics, Baruch College
City University of New York, New York, U.S.A.
rados.radoicic@baruch.cuny.edu

Géza Tóth‡
Alfréd Rényi Institute
Budapest, Hungary
geza@renyi.hu

Submitted: Aug 26, 2012; Accepted: Apr 26, 2014; Published: May 9, 2014
Mathematics Subject Classifications: 52C30

Abstract

We show that the lines of every arrangement of n lines in the plane can be colored with $O(\sqrt{n}/\log n)$ colors such that no face of the arrangement is monochromatic. This improves a bound of Bose et al. by a $\Theta(\sqrt{\log n})$ factor. Any further improvement on this bound would also improve the best known lower bound on the following problem of Erdős: estimate the maximum number of points in general position within a set of n points containing no four collinear points.

Keywords: Arrangements of lines, chromatic number, sparse hypergraphs.

*Supported by NSF grant CCF-08-30272, by Hungarian Science Foundation EuroGIGA Grant OTKA NN 102029, and by Swiss National Science Foundation grants 200021-137574 and 200020-144531.
†Supported by ISF grant (grant No. 1357/12).
‡Supported by Hungarian Science Foundation Grant OTKA K 83767 and NN 102029.
1 Introduction

Given a simple arrangement \mathcal{A} of a set L of lines in \mathbb{R}^2 (no parallel lines and no three lines going through the same point), decomposing the plane into the set C of cells (i.e. maximal connected components of $\mathbb{R}^2 \setminus L$), Bose et al. [1] defined a hypergraph $H_{\text{line-cell}} = (L, C)$ with the vertex set L (the set of lines of \mathcal{A}), and each hyperedge $c \in C$ being defined by the set of lines forming the boundary of a cell of \mathcal{A}. They initiated the study of the chromatic number of $H_{\text{line-cell}}$, and proved that for $|L| = n$, $\chi(H_{\text{line-cell}}) = O(\sqrt{n})$ and $\chi(H_{\text{line-cell}}) = \Omega(\log n \log \log n)$. In other words, they proved that the lines of every simple arrangement of n lines can be colored with $O(\sqrt{n})$ colors so that there is no monochromatic face; furthermore, they provided an intricate construction of a simple arrangement of n lines that requires $\Omega(\log n \log \log n)$ colors.

In this short note, we improve their upper bound by a $\Theta(\sqrt{\log n})$ factor, and extend it to not necessarily simple arrangements.

Theorem 1. The lines of every arrangement of n lines in the plane can be colored with $O(\sqrt{n/\log n})$ colors so that no face of the arrangement is monochromatic.

A set of points in the plane is in general position if it does not contain three collinear points. Let $\alpha(S)$ denote the maximum number of points in general position in a set S of points in the plane, and let $\alpha_4(n)$ be the minimum of $\alpha(S)$ taken over all sets S of n points in the plane with no four point on a line. Erdős pointed out that $\alpha_4(n) \leq n/3$ and suggested the problem of determining or estimating $\alpha_4(n)$. Füredi [3] proved that $\Omega(\sqrt{n \log n}) \leq \alpha_4(n) \leq o(n)$.

We observe that any improvement of the bound in Theorem 1 would immediately imply a better lower bound for $\alpha_4(n)$. Indeed, suppose that $\chi(A) \leq k(n)$ for any arrangement of n lines, and let P be a set of n points, no four on a line. Let P^* be the dual arrangement of a slightly perturbed P (according to the usual point-line duality, see, e.g., [2, §8.2]). Color P^* with $k(n)$ colors such that no face is monochromatic, let $S^* \subseteq P^*$ be the largest color class, and let S be its dual point set. Observe that the size of S is at least $n/k(n)$ and it does not contain three collinear points, since the three lines that correspond to any three collinear points in P bound a face of size three in P^*.

2 Proof of Theorem 1

Let \mathcal{A} be an arrangement of a set L of n lines, decomposing the plane into the set C of cells, and let $H_{\text{line-cell}}$ be the corresponding hypergraph (defined as in the previous section).

We show that $\chi(H_{\text{line-cell}}) = O\left(\sqrt{\frac{n}{\log n}}\right)$.

An independent set in $H_{\text{line-cell}}$ is a set $S \subseteq L$ such that for every $c \in C$, c is not a subset of S (in other words, no cell of \mathcal{A} has its boundary formed only by lines in S). The proof is based on the following fact.
Theorem 2. There is an absolute constant \(c > 0 \) such that the size \(\alpha(H_{\text{line-cell}}) \) of the maximum independent set is at least \(c\sqrt{n \log n} \).

We color the lines in \(A \) so that no face is monochromatic by following the same method as in [1] (where they used the weaker version of Theorem 2 stating \(\alpha(H_{\text{line-cell}}) = \Omega(\sqrt{n}) \)). That is, we iteratively find a large independent set of lines (whose existence is guaranteed by Theorem 2), color them with the same (new) color, and remove them from \(A \).

Clearly, this algorithm produces a valid coloring. We verify, by induction on \(n \), that at most \(\frac{2}{c}\sqrt{n \log n} \) colors are used in this coloring. We assume the bound is valid for all \(n \leq 256 \) (by taking sufficiently small \(c > 0 \)). For \(n > 256 \), we have \(\log 4 < \frac{1}{4} \log n \). Let \(i \) be the smallest integer such that after \(i \) iterations the number of remaining lines is at most \(n/4 \). Since in each of these iterations at least \(c\sqrt{\frac{n}{4}} \log n \geq c\sqrt{n/\log n} \) vertices (lines) are removed, \(i \leq \frac{n^4}{c^2 \log n} \leq \frac{1}{2c} \sqrt{n \log n} \). Therefore, by the induction hypothesis the number of colors that the algorithm uses is at most

\[
i + \frac{2}{c} \sqrt{\frac{n}{4} \log \frac{n}{4}} \leq \frac{1}{2c} \sqrt{n \log n} + \frac{1}{c} \sqrt{n \log n - \frac{n}{4} \log n} < \frac{1}{\sqrt{2c}} \sqrt{n \log n} + \frac{\sqrt{4/3}}{c} \sqrt{n \log n} \leq \frac{2}{c} \sqrt{n \log n}.
\]

The proof of Theorem 2 is based on a result on independent sets in sparse hypergraphs. Given a hypergraph \(H \) on a vertex set \(V \), the sub-hypergraph \(H[X] \) induced by \(X \subset V \) consists of all edges of \(H \) that are contained in \(X \). A hypergraph \(H = (V, E) \) is \(k \)-uniform if every edge \(e \in E \) has size \(k \). Given a \(k \)-uniform hypergraph \(H \) and a set \(S \subset V \) with \(|S| = k - 1 \), the co-degree of \(S \) is the number of all vertices \(v \in V \) such that \(S \cup \{v\} \in E \). Kostochka et al. [4] proved that if \(H \) is a \(k \)-uniform hypergraph, \(k \geq 3 \), with all co-degrees at most \(d \), then \(\alpha(H) \geq c_k \left(\frac{n}{d} \log \frac{n}{d} \right)^{1/d} \), where \(c_k > 0 \).

In fact, a careful look at their proof reveals the following result, that we state for 3-uniform hypergraphs, since this is the case that we need.

Lemma 2.1 ([4]). Let \(H = (V, E) \) be a 3-uniform hypergraph on \(|V| = n \) vertices with all co-degrees at most \(d \), \(d < n/(\log n)^{12} \). Let \(X \) be a random subset of \(V \), obtained by choosing each vertex of \(V \) independently with probability \(p = \frac{n^{-2/5}}{(d\log \log \log n)^{5/4}} \). Let \(Z \) be a set chosen uniformly at random among all the independent sets of \(H[X] \). Then, with high probability \(|Z| = \Omega(\sqrt{n \log n}) \).

With Lemma 2.1 in hand we can now prove Theorem 2.

Proof of Theorem 2: A cell of an arrangement \(A \) is called an \(r \)-cell, if \(r \) lines of \(L \) are forming its boundary. Let \(H_\Delta \subset H_{\text{line-cell}} \) be the 3-uniform hypergraph with the vertex set \(L \) being the set of lines, and each hyperedge defined by the triple of lines forming the boundary of a 3-cell of \(A \). Since any two lines can participate in the boundaries of at most four 3-cells of \(A \), all co-degrees of \(H \) are at most \(d = 4 \). Now, as in Lemma 2.1, let \(X \) be a random subset of \(L \), obtained by choosing each line in \(L \) independently with probability
\[p = \frac{n^{-2/5}}{(4 \log \log n)^{3/5}}. \] Since there are \(O(n^2) \) faces in \(A \) and \(O(n) \) of them are 2-cells (since every line can bound at most four such faces), the expected number of 2-cells of \(A \) in \(H_{\text{line-cell}}[X] \) is \(O(p^2 n) = o(\sqrt{n \log n}) \), and the expected number of \(r \)-cells, \(r \geq 4 \), of \(A \) in \(H_{\text{line-cell}}[X] \) is \(O(p^4 n^2) = o(\sqrt{n \log n}) \). From Lemma 2.1 it follows that there exists a set \(Z \subset X \subset L \) of size \(\Omega(\sqrt{n \log n}) \), that is an independent set of \(H_{\Delta}[X] \), and such that the number of \(r \)-cells, \(r \neq 3 \), of \(A \) in \(H_{\text{line-cell}}[Z] \) is \(o(\sqrt{n \log n}) \). Removing from \(Z \) one vertex (line) for each such \(r \)-cell, we obtain an independent set of \(H_{\text{line-cell}} \) of size \(\Omega(\sqrt{n \log n}) \).

References

